Пирамида Хеопса и постоянная тонкой структуры 5

Материал из Cheops.The encyclopedia.

Перейти к: навигация, поиск

Содержание

Движение в центрально-симметричном гравитационном поле

Л.Д.Ландау, Е.М.Лифшиц.Теория поля.1983

Рассмотрим движение частицы в центрально-симметричном гравитационном поле. Как и во всяком центральном поле, движение будет происходить в одной "плоскости", проходящей через центр поля; выберем эту плоскость в качестве плоскости θ = π/2.

Для определения траектории частицы воспользуемся уравнением Гамильтона-Якоби

gik(∂S/∂xi)(∂S/∂xk) - mc2 = 0,

где m - масса частицы (массу же центрального тела обозначим здесь как m'), c - скорость света. С метрическим тензором

ds2 = (1 - rg/r)c2dt2 - r2(sin2θ dφ2 + dθ2) - dr2/(1 - rg/r)

это уравнение принимает вид

(1 - rg/r)−1(∂S/c∂t)2 - (1 - rg/r)(∂S/∂r)2 - 1/r2(∂S/∂φ)2 - m2c2 = 0,

где rg = 2m'γ/c2 - гравитационный радиус центрального тела (Солнца).

По общим правилам решения уравнения Гамильтона-Якоби ищем S в виде

S = - E0t + Mφ + Sr(r)

с постоянной энергией E0 и моментом импульса M. Подставив S = - E0t + Mφ + Sr(r) в (1 - rg/r)−1(∂S/c∂t)2 - (1 - rg/r)(∂S/∂r)2 - 1/r2(∂S/∂φ)2 - m2c2 = 0, найдем производную dSr/dr и затем:

Sr = ∫[E02/c2(1 - rg/r)−2 - (m2c2 + M2/r2)(1 - rg/r)−1]1/2 dr.

Зависимость r = r(t) дается уравнением ∂S/∂E0 = const, откуда

ct = E0/mc2 ∫dr /(1 - rg/r)[(E0/mc2)2 - (1 + M2/m2c2r2)(1 - rg/r)]1/2.

Траектория же определяется уравнением ∂S/∂M = const, откуда

φ = ∫ M/r2 [E02/c2 - (m2c2 + M2/r2)(1 - rg/r)]−1/2 dr.

Этот интеграл приводится к эллиптическому.

Для движения планет в поле тяготения Солнца релятивистская теория приводит лишь к незначительным поправкам по сравнению с теорией Ньютона, поскольку скорости планет очень малы по сравнению со скоростью света. В уравнении траектории φ = ∫ M/r2 [E02/c2 - (m2c2 + M2/r2)(1 - rg/r)]−1/2 dr этому соответствует малость отношения rg/r (для Солнца rg/r = 3 км; для Земли rg/r = 0,9 см).

Для вычисления релитивистских поправок к траектории удобно исходить из выражения φ = ∫ M/r2 [E02/c2 - (m2c2 + M2/r2)(1 - rg/r)]−1/2 dr. радиальной части действия до его дифференцирования по M. Заменим переменную интегрирования согласно r(r - rg) = r'2, т.е. r - rg/2 ≈ r', в результате чего член с M2 под корнем примет вид M2/r'2. В остальных же членах производим разложение по степеням rg/r' и получаем с требуемой точностью:

Sr = ∫ [(2E'm + E'2/c2) + 1/r(2m2m'γ + 4E'mrg) - 1/r2(M2 - 3m2c2rg2/2)]1/2 dr,

где мы для краткости опустили штрих у r' и ввели нерелятивистскую энергию E' (без энергии покоя).

Поправочные члены в коэффициентах в первых двух членах под корнем отражаются только на не представляющем особого интереса изменении связи между энергией и моментом частицы и параметрами ее ньютоновской орбиты (эллипса). Изменение же коэффициента при 1/r2 приводит к более существенному эффекту - к систематическому (вековому) смещению перигелия орбиты.

Поскольку траектория определяется уравнением φ + ∂Sr/∂M = const, то изменение угла φ за время одного оборота планеты по орбите есть

Δφ = - (∂/∂M) ΔSr,

где ΔSr - соответствующее изменение Sr. Разлагая Sr по степеням малой поправки в коэффициент при 1/r2, получим:

ΔSr = ΔSr(0) - (3m2c2rg2/4M) (∂ΔSr(0)/∂M),

где ΔSr(0) соответствует движению по несмещающемуся замкнутому эллипсу. Дифференцируя это соотношение по M и учитывая, что

- ∂ΔSr(0)/∂M = Δφ(0) = 2π ,

найдем

Δφ = 2π + (3πm2c2rg2/2M2) = 2π + (6πγ2m2m'2/c2M2).

Второй член и представляет собой искомое угловое перемещение δφ ньютоновского эллипса за время одного оборота, т.е. смещение перигелия орбиты. Выражая его через длину большой полуоси a и эксцентриситет e с помощью известной формулы M2/γm'm2 = a(1 - e2), получим:

δφ = 6πγm'/c2a(1 - e2) = 6πγMc/c2a(1 - e2) при m' = Mc.

Численные значения смещения, определяемого этой формулой, для Меркурия и Земли равны соответственно 43,0" и 3,8" в сто лет.

От автора:

  • для читателей с недостаточной математической подготовкой принять во внимание только выведенную формулу для смещения перигелия орбиты планеты;
  • следует заметить, что δφ существует и тогда, когда e = 0, т.е. для круговой орбиты.

Смещение перигелия - номер планеты

Для определения номеров планет Венеры и Земли, включая остальные известные и неизвестные планеты, введем понятие - предельная гравитационная орбита планеты.

Чем ближе планета к Солнцу, тем больше ее орбитальная скорость и при этом остается справедливым второй закон Кеплера. Рассмотрим орбиты планет, которые появляются при v→c, где v - орбитальная скорость, c - скорость света. Вернемся снова к квантованию Солнечной системы:

vnrn = 2 n h',

где vn - орбитальная скорость n-ой планеты, rn - среднее расстояние n-ой планеты от Солнца, n = 0,1,2,... - номер гравитационной орбиты планеты (главное квантовое число для гравитационного поля), h' = 1,3859×1015 м2 - гравитационная солнечная постоянная.

Для гравитационных орбит планет дополнительно получаем:

c rN' = 2 N h',

где rN' - среднее расстояние планеты от Солнца относительно предельной гравитационной орбиты, N = 0,1,2,... - номер гравитационной орбиты планеты относительно предельной гравитационной орбиты. При N = 1 получаем:

c r1' = 2 h'.

Откуда находим

r1' = 2h' / c = 9244 км - предельная гравитационная орбита для планет.

Объединяем:

Меркурий - v1r1 = 2 h',

предельная гравитационная орбита - cr1' = 2 h'

и получаем:

(v1/c)(r1/r1') = 1 или v1/c = r1'/r1.

Одна и та же реальная орбита планеты должна иметь разные порядковые номера n и N. Поэтому rn = rN или

n2 r1 = N2 r1'.

Если n = 1, то r1 = N2r1' - для Меркурия. Откуда вытекает N = 79.

Следовательно, для произвольной планеты имеем:

N2 = n2 (rn/r1') = rn/r1'

и N можно определять по формуле:

N = (rn / r1')1/2 ,

где N - номер гравитационной орбиты планеты относительно предельной гравитационной орбиты.

Номера планет N для Солнечной системы относительно предельной гравитационной орбиты приведены ниже (таблица 5).

Таблица 5

Номер по порядку Планета N
1 Меркурий 79
2 Венера 107
3 Земля 126
4 Марс 157
5 Юпитер 290
6 Сатурн 393
7 Уран 558
8 Нептун 699
9 Плутон 800

Выведенное в общей теории относительности (ОТО) смещение перигелия орбиты планеты δφ применим в дальнейших расчетах.

δφ1 = 6πγMc / c2r1(1 - e12), n = 1 ,

Продолжение

См. также

Ссылки

Более хорошее математическое внешнее оформление на http://ru.science.wikia.com

Литература

  • Физический энциклопедический словарь.М."Советская энциклопедия".1983
  • В.Б.Берестецкий, Е.М.Лифшиц, Л.П.Питаевский. Теоретическая физика//Квантовая электродинамика.Т.IV.М."Наука".1989
  • Ю.А.Храмов. Физики//Биографический справочник.М."Наука".1983
  • О.П.Спиридонов. Универсальные физические постоянные.М."Просвещение".1984
  • Л.Р.Стоцкий. Физические величины и их единицы.М."Просвещение".1984
  • Дж.Нарликар. Гравитация без формул/перев. с англ./.М."Мир".1985
  • В.Чолаков. Нобелевские премии//Ученые и открытия/перев. с болг./.М."Мир".1987
  • Я.Б.Зельдович, И.М.Яглом. Высшая математика//Для начинающих физиков и техников.М."Наука".1982
  • Г.Корн, Т.Корн. Справочник по математике//Для научных работников и инженеров/перев. с амер./.М."Наука".1984
Личные инструменты